Performance evaluation of respiratory motion‐synchronized dynamic IMRT delivery

نویسندگان

  • S.A. Yoganathan
  • K.J. Maria Das
  • Arpita Agarwal
  • Shaleen Kumar
چکیده

The purpose of this study was to evaluate the capabilities of DMLC to deliver the respiratory motion-synchronized dynamic IMRT (MS-IMRT) treatments under various dose rates. In order to create MS-IMRT plans, the DMLC leaf motions in dynamic IMRT plans of eight lung patients were synchronized with the respiratory motion of breathing period 4 sec and amplitude 2 cm (peak to peak) using an in-house developed leaf position modification program. The MS-IMRT plans were generated for the dose rates of 100 MU/min, 400 MU/min, and 600 MU/min. All the MS-IMRT plans were delivered in a medical linear accelerator, and the fluences were measured using a 2D ion chamber array, placed over a moving platform. The accuracy of MS-IMRT deliveries was evaluated with respect to static deliveries (no compensation for target motion) using gamma test. In addition, the fluences of gated delivery of 30% duty cycle and non- MS-IMRT deliveries were also measured and compared with static deliveries. The MS-IMRT was better in terms of dosimetric accuracy, compared to gated and non-MS-IMRT deliveries. The dosimetric accuracy was observed to be significantly better for 100 MU/min MS-IMRT. However, the use of high-dose rate in a MS-IMRT delivery introduced dose-rate modulation/beam hold-offs that affected the synchronization between the DMLC leaf motion and target motion. This resulted in more dose deviations in MS-IMRT deliveries at the dose rate of 600 MU/min.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The influence of respiratory motion on dose distribution of 3D-CRT and IMRT- A simulation study

Background: 3DCRT (three-dimensional conformal radiotherapy) and IMRT (intensity-modulated radiotherapy) has provided us with tools to delineate the radiation dose distribution of tumor targets. However, the precision of radiation can be compromised by respiratory motion, which usually limits the geometric and dosimetric accuracy of radiotherapy. The purpose of this study is to evaluate the imp...

متن کامل

Quantifying the effect of intrafraction motion during breast IMRT planning and dose delivery.

Respiratory motion during intensity modulated radiation therapy (IMRT) causes two types of problems. First, the clinical target volume (CTV) to planning target volume (PTV) margin needed to account for respiratory motion means that the lung and heart dose is higher than would occur in the absence of such motion. Second, because respiratory motion is not synchronized with multileaf collimator (M...

متن کامل

Development and Investigation of Intensity-modulated Radiation Therapy Treatment Planning for Four-dimensional Anatomy

Lung cancer is the leading cause of cancer-related deaths worldwide. Radiotherapy is one of the main treatment modalities of lung cancer. However, the achievable accuracy of radiotherapy treatment is limited for lung-based tumors due to respiratory motion. Four-dimensional (4D) radiotherapy explicitly accounts for anatomic motion by characterizing the motion, creating a treatment plan that acco...

متن کامل

Management of three-dimensional intrafraction motion through real-time DMLC tracking.

Tumor tracking using a dynamic multileaf collimator (DMLC) represents a promising approach for intrafraction motion management in thoracic and abdominal cancer radiotherapy. In this work, we develop, empirically demonstrate, and characterize a novel 3D tracking algorithm for real-time, conformal, intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT)-based radiation...

متن کامل

IMRT delivery to a moving target by dynamic MLC tracking: delivery for targets moving in two dimensions in the beam's eye view.

A new modification of the dynamic multileaf collimator (dMLC) delivery technique for intensity-modulated therapy (IMRT) is outlined. This technique enables the tracking of a target moving through rigid-body translations in a 2D trajectory in the beam's eye view. The accuracy of the delivery versus that of deliveries with no tracking and of 1D tracking techniques is quantified with clinically de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2013